
Constraint Programming Letters 5 (2012) 1-17 Submitted 12/2010; Revised: 11/2011; Published Published 03/2012

Symmetry Breaking with Polynomial Delay

Tim Januschowski∗ tim.januschowski@sap.com

SAP Innovation Center

Prof.-Dr.-Helmert Str. 2-3

14485 Potsdam, Germany

Barbara M. Smith b.m.smith@leeds.ac.uk

School of Computing

University of Leeds, Leeds, U.K.

M.R.C. van Dongen dongen@cs.ucc.ie

Computer Science Department

University College Cork, Cork, Ireland

Editor: Jean-Charles Regin

Abstract

Many well-known tractable classes of constraint satisfaction problems (csps) are conser-
vative. A conservative class of csps is a class for which class membership of a csp is
preserved under applying arbitrary domain reductions such as enforcing domain consis-
tency. Tractable, conservative classes have polynomial delay, that is, the time between
successive solutions is polynomial.

The question tackled in this paper is whether symmetry breaking, while potentially
removing exponentially many solutions, preserves polynomial delay. It is shown here that
symmetry breaking by adding certain lexleader constraints to any instance of any tractable
conservative class still allows for �nding all solutions with a time between successive solu-
tions that is polynomial in the size of the instance with lexleader constraints. Furthermore,
in the practically important case where the number of lexleader constraints is limited to
a polynomial number in the size of the instance, the time between successive solutions
continues to be polynomial in the size of the instance without lexleader constraints.

1. Introduction

In many applications of constraint satisfaction problems (csps), it often does not su�ce
to �nd only one solution, but the task is to �nd all solutions.1 Examples range from
problems of theoretical interest (see e.g. Distler and Kelsey, 2009; Behle and Eisenbrand,
2007; Bussieck and Lübbecke, 1998) to industrial applications (see e.g. Shlyakhter, 2007;
Ip and Dill, 1996, and references therein). The task of �nding all solutions of a csp is
#P-complete, which is much harder than the already hard task of �nding one solution,

∗. Part of this research was supported by a PhD scholorship Embark initiative of the Irish Research Council
for Science, Engineering and Technology and was conducted at Cork Constraint Computation Center,
UCC, Cork.

1. The reviewers pointed out that even if one only wants to identify one solution of a csp, it could be useful
to compute all solutions in order to store them in a table constraint which then speeds up the search for
a solution.

c©2012 Tim Januschowski, Barbara M. Smith and M.R.C. van Dongen.

Januschowski et al.

which is NP-complete (Garey and Johnson, 1979). Even for those classes where we can
prove satis�ability in polynomial time, it may be NP-complete to decide whether a second
solution exists. For example, consider the following class of csps. Given any csp, we create
a new value v and add it to the domain of each variable. Next we modify the constraints
such that they also allow the assignment of v to each variable. For this class of csps, the
problem of �nding one solution is polynomial. However, deciding whether the csp has a
second solution is NP-complete. Identifying classes of csps where we can �nd all solutions
in an �acceptable time� has therefore received considerable attention (see e.g. Schnoor and
Schnoor, 2007; Cohen, 2004; Greco and Scarcello, 2010). Acceptable time for �nding all
solutions formalises as follows. First, deciding the satis�ability of any instance of the class is
polynomial. Finally, the class has an algorithm which, for any instance in the class, requires
(1) polynomial time between start and the �rst solution, (2) polynomial time between suc-
cessive solutions, and (3) polynomial time between the last solution and termination. The
class is then said to have polynomial delay.

Symmetries are a frequent feature of many practically important csps. Symmetries of a
csp are permutations of the variable-value assignments that preserve the constraints. The
presence of symmetries indicates a redundancy in the csp: symmetries partition the set of
solutions into disjoint classes of symmetrically equivalent solutions. For symmetric csps,
it is often enough to only �nd all equivalence classes of solutions as opposed to �nding all
solutions (see e.g. Shlyakhter, 2007; Ip and Dill, 1996, and references therein). Finding
equivalence classes of solutions is particularly interesting if the symmetries of the csp stem
from the process of modelling a problem as a csp. Such model-introduced symmetries
appear frequently (see e.g. Smith, 2006; Frisch et al., 2005). Finding all equivalence classes
of symmetric solutions can be achieved by adding symmetry breaking constraints to the
csp, which exclude symmetric solutions while keeping at least one representative solution
per equivalence class. In this paper, we consider symmetry breaking by adding lexleader
constraints which will be introduced formally further on. For csps with polynomial delay,
we study the complexity of the class with added lexleader constraints.

Main Contribution. We show that excluding symmetric solutions by adding certain
lexleader constraints (Crawford et al., 1996) preserves polynomial delay for many well-known
tractable classes which are conservative. Here, a class is conservative if an arbitrary domain
reduction (which we de�ne below precisely) of any csp in the class does not forfeit mem-
bership of the class. We prove that symmetry breaking is possible with a delay which
is polynomial in the size of the instance and the size of the lexleader constraints. This
includes complete symmetry breaking (with possibly super-exponentially many lexleader
constraints). However, if symmetry is broken by adding a polynomial number of lexleader
constraints, then the delay is polynomial in the size of the instance only. Of course, such
symmetry breaking may not be complete.

This is a non-trivial result as we argue in the following. A naïve approach would simply
generate all solutions regardless of the lexleader constraints and, after generation, reject
solutions when they are symmetrically equivalent to an already found one. This approach
would not preserve polynomial delay because the number of solutions rejected between
successive symmetrically-distinct solutions can be super-exponential. A simple example
shows this.

2

Symmetry Breaking with Polynomial Delay

Example 1 Consider a csp with n variables x1, x2, x3, . . . , xn. Each variable has domain

{1, 2, 3, . . . , n} and we have one alldifferent constraint (decomposed into binary 6= con-

straints). A straight-forward extension of a result by Salamon and Jeavons (2008) yields that

this csp has polynomial delay. The variable symmetries can be broken completely by adding a

linear number of constraints xi ≤ xi+1 for i ∈ {1, 2, . . . , n−1}(Puget, 2005; Grayland et al.,

2009). Without the symmetry breaking constraints, there are n! many solutions and with the

symmetry breaking constraints there is 1 solution. The afore-mentioned generate-and-test

approach would not have polynomial delay.

In this paper, we prove that adding lexleader constraints nevertheless has the potential
of �nding all symmetrically distinct solutions of a csp with polynomial delay even though we
may sometimes exclude a super-exponential number of solutions with a polynomial number
of lexleader constraints. In particular, we show that the delay of the csp with lexleader
constraints is polynomial even in the size of the instance without lexleader constraints, if
we limit the number of lexleader constraints to a polynomial number. So, we can �nd all
equivalence classes of solutions much faster with the help of lexleader constraints.

Structure of the Paper. We start by introducing notation, discussing related work and
introducing lexleader constraints in Sections 2 and 3. The contribution of this paper is then
split into two parts. In the �rst part, we consider lexleader constraints in isolation from other
constraints and in the second part, we consider them in combination with problem-speci�c
constraints.

When considering lexleader constraints in isolation from problem-speci�c constraints, we
start by introducing the class lex of lexleader constraints on which we focus our attention in
this paper in Section 4. In the same section, we also consider csps whose constraints are in
lex. We shall refer to this class of csps as lcsp. We show that lcsp has polynomial delay.
To the best of our knowledge, this result does not follow from known results on classes with
polynomial delay.

When considering lexleader constraints in combination with problem-speci�c constraints,
we present an algorithm in Section 5 that �nds all solutions of a csp with lexleader con-
straints in lex. We prove that the algorithm requires polynomially many calls to an oracle
between �nding subsequent solutions. This is our main result. Since the oracle runs in
polynomial time for many well-known classes with polynomial delay, the preservation of
polynomial delay under the addition of lexleader constraints follows directly.

2. Notation and De�nitions

A constraint satisfaction problem (csp) is a triple C = (X ,D, C), where X is the set of
variables of C, every variable x has a �nite domain D(x) ∈ D, and C is the set of constraints
of C. For ease of exposition, we assume for the rest of this paper that every variable has the
same domain and that the domain is an interval of integers. Every constraint has an arity .
The k-ary constraint c is a pair 〈s, r〉, where s is a list of k distinct variables x1, . . . , xk which
is called the scope and r is called the relation of c. The relation is either given extensionally
as a list of tuples that is allowed by the constraint (r ⊆ D(x1)×· · ·×D(xk)) or intensionally
as an expression. The arity of C is the maximum arity over all constraints in C. A csp

is called binary if all constraints are of arity 2 or lower. A literal is a (variable,value)-

3

Januschowski et al.

assignment. A partial assignment is a set of literals such that no variable appears twice. If
a partial assignment is allowed by a constraint, then we call it a consistent assignment with

respect to this constraint. If a partial assignment is allowed by all constraints of C, then
we call it a consistent assignment. A solution is a consistent assignment on all variables. If
C has a solution, then we call C satis�able and otherwise unsatis�able. For a csp with n
variables, we denote an order ≺ on the variables either as a list [x1, x2, . . . , xn] or by stating
x1 ≺ x2 ≺ · · · ≺ xn. We call a partial assignment to the �rst variables with respect to
≺ a consecutive partial assignment with respect to ≺. We assume from here on, that the
domain of any variable x contains all integers between two values min and max, denoted by
[min,max]. We refer to the smallest value that we can consistently assign to a variable as
the lower bound of the variable.

We call a constraint c = 〈s, r〉 generalised arc consistent (gac) if the following holds for
all variables in s = [x1, x2, . . . , xk]. For any xi ∈ s and di ∈ D(xi) with i ∈ {1, . . . , k}, there
is a support , that is an assignment {(x1, d1), (x2, d2), . . . , (xk, dk)} ∈ r such that dj ∈ D(xj)
for {1, . . . k} 3 j 6= i. If the constraint is binary and gac, we simply say it is arc consistent .
We can make a constraint gac by removing those values from the domains of the variables
in the scope of the constraint which do not have support.

Let us de�ne the size of a csp. Given an instance (X ,D, C), we de�ne the size of the
extensional constraints �rst. We represent each constraint scope as a list of variables s ⊆ X ,
and each constraint relation as a list of tuples over D(x), x ∈ s. For a binary encoding, the
size of the extensional constraints is then

log2(|X |) + log2(M)
∑
〈s,r〉∈C

|s||r| ,

where M = maxx∈X |D(x)|. In this paper, we only consider one type of intensional con-
straint, which we introduce in Section 3. The size of an intensional constraint of this type
is (n log2(|X |)) which comes from the number of variables involved in this constraint. The
size of a csp with constraints in both extensional and intensional form is the sum of the size
of the extensional constraints and the size of the intensional constraints.

A class of csps is said to be tractable if we can decide the satis�ability of any instance in
this class in a time that is polynomial in the size of the instance. A tractable class of csps
has polynomial delay if for any instance in the class, the following times are polynomial in
the size of the instance: the time between the start and the �rst solution, the time between
consecutive solutions and the time between the last solution, and the termination of the
algorithm.

We call a class of csps conservative if class membership of any instance in the class
is preserved under applying arbitrary domain reductions (Cooper et al., 2010). A domain

reduction of a domain D is either the replacement of D by D′ ⊆ D together with adjustments
of the constraints (e.g. removing tuples from constraint relations); or a domain reduction is
the addition of a unary constraint that reduces the size of the domain of a variable.

With any csp C we associate a hypergraph called the microstructure complement (msc).
The set of nodes of the msc are the literals of C. A set of nodes a = {(x1, d1), . . . , (xk, dk)}
is a hyperedge in the msc either if k = 2 and x1 = x2 or if a is forbidden by a constraint
of C. An automorphism of a hypergraph is a bijection on the set of nodes that preserves
hyperedges. A constraint symmetry (Cohen et al., 2006) of C is an automorphism of the

4

Symmetry Breaking with Polynomial Delay

msc of C. A variable constraint symmetry is a constraint symmetry φ such that φ(x, d) =
(ψ(x), d) for a suitable chosen bijective map ψ on the variables of C. Constraint symmetries
form a group and partition the set of solutions of a csp into disjoint orbits, which are
equivalence classes of symmetric solutions.

An example for variable constraint symmetries can be found in a cspmodelling the graph
colouring problem. The task is to decide whether a given graph can be (node) colored with
at most k colours, where k is given. A csp with one variable per node in the input graph,
{1, 2, . . . , k} as the domain of each variable, and inequality constraints for pairs of variables
corresponding to adjacent nodes in the graph has variable symmetries corresponding to the
automorphisms of the graph.

3. Related Work

Apart from constraint symmetries, other forms of symmetries exist, most notably solution

symmetries. In contrast to constraint symmetry, solution symmetry are only required to
preserve the solutions of a csp. Solution symmetries are a supergroup of constraint sym-
metries and our results hold for solution symmetries as well. However, solution symmetries
that are not constraint symmetries are typically very hard to identify and, in practice, Con-
straint Programmers consider constraint symmetries (Cohen et al., 2006). Two frequent
constraint symmetries are variable constraint symmetries and value constraint symmetries.
A value constraint symmetry φ : X × D → X × D is a constraint symmetry such that
φ(x, d) = (x, ψ(d)) for a suitably chosen bijective map ψ : D → D on the values. An ex-
ample for value symmetries are the colours/domain values in the csp modelling the graph
colouring problem. For value symmetries, we can ensure in polynomial time that in a search
tree as constructed by a backtrack algorithm no two nodes are symmetric via a value sym-
metry by merely relying on subgroups of the symmetry group that are unbroken by the
assignment (Roney-Dougal et al., 2004). Hence, results on the preservation of polynomial
delay naturally hold for problems with value constraint symmetry breaking. However, for
variable constraint symmetries, which we consider here, results on the preservation of poly-
nomial delay are new.

In this paper, we consider adding symmetry breaking constraints to a csp before solving
the csp. This is usually referred to as static symmetry breaking. Other symmetry breaking
methods add symmetry breaking constraints during search dynamically. See (Gent et al.,
2006) for an overview of general approaches to symmetry breaking in constraint program-
ming. For static symmetry breaking, Puget (1993) presented an abstract framework and
provided a basic symmetry breaking constraint. Crawford et al. (1996) then introduced
general symmetry breaking constraints in the context of Boolean satis�ability. We consider
static symmetry breaking for variable constraint symmetries. A variable constraint symme-
try σ of a csp with n variables x1, . . . , xn can be thought of as a permutation of the index
set {1, 2, . . . , n}. Let us choose an order on the variables, say [x1, x2, ..., xn]. A lexleader
constraint (Crawford et al., 1996) enforces that any consistent assignment on the variables
[x1, x2, ..., xn] does not lexicographically exceed its symmetric image under σ. In formula,
the lexleader constraint is

[x1, x2, . . . , xn] ≤lex [xσ(1), xσ(2), . . . , xσ(n)] .

5

Januschowski et al.

We represent lexleader constraints intensionally because their extensional representation
may quickly lead to exponential space requirement. We refer to the variables on the left
hand side of ≤lex as lhs and to the variables on the right hand side as rhs. For lexicographic
comparison, we also need an order on the domains of the variables. In this paper, we shall use
the natural order on the integers. We refer to the variable order in the lhs of the lexleader
constraints and the order on the domains as the orders of the lexleader constraints. Lexleader
constraints preserve at least one solution from every orbit of solutions (Crawford et al., 1996).
We call this property partial symmetry breaking. If we introduce a lexleader constraint for
every symmetry, then we preserve exactly one solution per orbit (Crawford et al., 1996). We
call this property complete symmetry breaking. Unfortunately, the number of symmetries
can be super-exponential in the number of variables. This is why practitioners typically
do not add all possible lexleader constraints to a csp. Next, we discuss two approaches to
simplify lexleader constraints.

There are two main approaches to reducing the number and arity of lexleader constraints
which we present next. The �rst approach is partial symmetry breaking, that is, we only
construct lexleader constraints for a subset of the symmetries (see e.g. Gent et al., 2006).
The second approach consists of reduction rules that simplify a set of lexleader constraints
while preserving their logical equivalence.

An example of partial symmetry breaking is any set of lexleader constraints based on
transpositions. A transposition is a permutation that swaps two variables while having no
e�ect on the other variables. There are at most

(
n
2

)
transpositions of n variables, although

the symmetry group can be much larger: for instance if every transposition is a symmetry,
then every permutation of the variables is a symmetry, and the size of the group is n!. A
polynomially-sized set of lexleader constraints does not always provide complete symmetry
breaking and often only removes a polynomial number of solutions. However, in some cases,
a polynomially-sized set of lexleader constraints does remove an exponential number of solu-
tions: whenever the symmetry group contains all transpositions, adding lexleader constraints
based on transpositions breaks the symmetries completely (see e.g. Grayland et al., 2009;
Puget, 2005). In many cases, partial symmetry breaking may be a good alternative from a
user's point of view (see e.g. Shlyakhter, 2007; Flener et al., 2002; Grayland et al., 2009).

We brie�y discuss an example of a reduction rule which reduces the arity of lexleader
constraints (see e.g. Grayland et al., 2009). In Section 4, we shall consider a family of
lexleader constraints which subsumes lexleader constraints that are reduced with this rule.
Suppose that we are not deriving lexleader constraints for all symmetries, but only for
symmetries of a csp with n variables x1, . . . , xn that can be written as a composition of
disjoint transpositions. The advantage of a lexleader constraint based on a composition of
disjoint transpositions σ is that we can easily simplify the resulting lexleader constraints to
give lexleader constraints without repeated variables, as follows.

◦ If σ(i) = i, then xi can be dropped from both sides of the lexleader constraint;
◦ For indices a and b with a < b, if σ swaps the indices a and b, then the constraint will
�rst have xa on the lhs, paired with xb on the rhs, and then later xb on the lhs and
xa on the rhs. We can drop the second pair. If we have xi < xσ(i) for some i such that
1 ≤ i < b, then xa < xb and the second pair has no e�ect because the assignment on lhs
is already lexicographically less than the assignment on rhs. If xi = xσ(i) for 1 ≤ i < b,
then in particular xa = xb and again, the second pair has no e�ect.

6

Symmetry Breaking with Polynomial Delay

This is an example of a reduction rule for lexleader constraints. For simplicity, we re-
fer to a reduced lexleader constraint as a lexleader constraint as well throughout this pa-
per. In Example 1, the constraint xi ≤ xi+1 is a lexleader constraint for the transposi-
tion swapping i and i + 1 reduced with the above reduction rule as we easily see. First
[x1, . . . , xi, xi+1, . . . , xn] ≤lcsp [x1, . . . , xi+1, xi, . . . , xn] can be reduced to [xi, xi+1] ≤lcsp

[xi+1, xi] and this can then be reduced with the above rule to xi ≤lex xi+1.
We consider adding symmetry breaking constraints to classes of csps with polynomial

delay. Cohen (2004) shows that certain classes de�ned by restrictions on the constraint
relations have polynomial delay via an algorithm which we modify for our purposes further
on.2 Schnoor and Schnoor (2007) provide extensions of Cohen's results and present new
enumeration schemes for �nding all solutions. Greco and Scarcello (2010) prove the polyno-
mial delay of a wide range of classes de�ned by restrictions on constraint scopes.3 However,
none of these works considers symmetry breaking. We are not aware of work on problems
with polynomial delay with added symmetry breaking constraints.

To the best of our knowledge, no theoretical results on the e�ect of adding symmetry
breaking constraint on tractability or polynomial delay are known. Empirical results do not
provide a clear indication on the e�ect of symmetry breaking on tractability. For exam-
ple, there is abundant evidence of the practical usefulness of symmetry breaking (see e.g.
Gent et al., 2006). However, evidence also shows that symmetry breaking may be harmful
sometimes (see e.g. Gent et al., 2002; Prestwich, 2008).

4. Csps Consisting of Lexleader Constraints

This section studies lexleader constraints in isolation from problem-speci�c constraints. We
introduce lcsp as a class of csps that has only lexleader constraints of a restricted, yet
commonly appearing form and we show that lcsp has polynomial delay. Our results on
combining lexleader constraints with other constraints build on this result.

First, we de�ne the class of lexleader constraints that we need for the exposition of our
results.

De�nition 1 (lex) Let X be a set of variables ordered as [x1, x2, ..., xn]. A family of

lexleader constraints L on X is in lex if each lexleader constraint in L has the following

characteristics.

◦ The constraint is of the form

[x`1 , x`2 , x`3 , . . . , x`k] ≤lex [xr1 , xr2 , xr3 , . . . , xrk] . (1)

Often, we consider variables in lhs and rhs with the same sub-index i and refer to them

as a pair (x`i , xri) with respect to Constraint (1). We omit references to the lexleader

constraint whenever it is clear what we mean.

◦ For each j with 1 ≤ j < k, we have `j < `j+1 .

◦ For each j with 1 ≤ j ≤ k, we have `j < rj .

2. An easy example for a restriction on the constraint relations is that the constant relation is contained in
each constraint relation.

3. An example for a restriction on the constraint scope is that the graph which has variables of the csp as
nodes and constraint scopes of the csp as edges is a tree.

7

Januschowski et al.

Lexleader constraints for compositions of disjoint transpositions can be reduced (with the
reduction rule discussed in Section 3) such that they are contained in lex. Constraints in
lex therefore appear frequently. Furthermore, constraints in lex allow for strong results
with respect to gac as we shall see further on. First, let us de�ne a class of csps that we
want to study in the following. We remind the reader that we assume for ease of exposition
that all variables have the same domain.

De�nition 2 (lcsp) We denote the class of csps consisting of constraints in lex by lcsp.

The following theorem explains the e�ect of maintaining gac during search for solutions
of csps in lcsp with a chronological backtrack algorithm that maintains gac.

Theorem 3 For any csp in lcsp, where we search for a solution with a chronological

backtrack search with variable and value orders in the search being the same as in the lexleader

constraints, maintaining gac may only result in an increase in the lower bound on the

unassigned variables.

Proof Suppose that at some point in the search the variables x1, x2, . . . , xi have been as-
signed during search and the remainder have not. We show in the following that maintaining
gac may only remove the smallest values in the domains of the unassigned variables.

We consider an unassigned variable. Let us �rst consider the case, where an unassigned
variable occurs on the rhs of some constraint, paired with a lhs variable that is already
assigned. We refer to the rhs variable as xrj and the lhs variable as x`j , where x`j has been
assigned the value a, for some value min ≤ a ≤ max; `j ≤ i and rj > i. Let us consider the
e�ect of constraint propagation on the domain of such a variable xrj . First, all the preceding
variables on both sides of the constraint may have been assigned such that the lhs and rhs
variable in each pair are equal. In that case, we have xrj ≥ a. Next, a pair of variables in
the same constraint could exist that appears behind (x`j , xrj) in the order and the pair is
such that the rhs variable must have a smaller value than the corresponding lhs variable.
The pair (x`j , xrj) could then be the only pair of variables that will allow the constraint
to be satis�ed, by having x`j < xrj , resulting in xrj ≥ a + 1. (Note that because gac is
maintained on this constraint, it must be possible to do this. We must have x`j ≤ xrj , so
if x`j is assigned the value max, then the domain of xrj becomes max and it would not be
possible to assign the variables that appear later in the order in the constraint in a way that
forces xrj > x`j .) Hence, if a variable occurs on the rhs of a constraint, propagating the
constraint results in an increase of the lower bound.

Next, let us consider the case where an unassigned variable x`j appears on the lhs of
some constraint. We have `j > i. If x`j appears on the rhs of a constraint, its lower bound
may have increased as argued before. So in each constraint, when the lhs variables have
not yet been assigned, any variable appearing later in the order either in lhs or rhs may
have had its lower bound increased as a result of enforcing gac on other constraints. In the
extreme case, enforcing gac on another constraint may result in x`j = max. Because of the
previous domain reductions we must have x`j ≤ xrj , so xrj and every later variable on both
sides of the constraint must be instantiated to max.

To summarise, the e�ect of maintaining gac on a set of lexleader constraints on the do-
main of any of the variables xi+1, xi+2, ..., xn can only be that the lower bound is increased.

8

Symmetry Breaking with Polynomial Delay

In particular the value max is not removed.

Corollary 4 For any csp in lcsp, we can �nd all solutions failure-free, if we maintain

gac on each lexleader constraint during search.

Proof In a chronological backtrack algorithm, we choose the variable and value order in
the search as the same as in the lexleader constraints. In light of Theorem 3, we only have
to prove that we can extend any consistent assignment to a solution. This follows from the
fact that value max is not removed by maintaining gac: in a consistent partial assignment
as found by the chronological backtrack algorithm, we can assign max to all unassigned
variables which is consistent with all lexleader constraints.

Note that we do not require that gac is maintained on a conjunction of lexleader con-
straints, but on each lexleader constraint individually. Theorem 3 shows that when assigning
values to the variables in an order that is compatible with the lexleader constraints, main-
taining gac only removes values from the lower end of any domain. If di�erent orders are
used for search and for constructing the lexleader constraints, then failures may occur, as
we show in the following example.

Example 2 Suppose all variables in the csp have domain [0, 1] and the lexleader constraints
constructed for order [x1, x2, . . . , x6] are

[x1, x5] ≤lex[x2, x6] (2)

and

[x1, x2, x3] ≤lex[x5, x6, x4] . (3)

Note that these constraints are in lex. Suppose we make the assignments: x1 = 0, x2 = 0,
x3 = 1 and x4 = 0. Since x1 = x2, it follows from (2) that x5 ≤ x6. Since x3 > x4, it
follows from (3) that either x5 > x1 = 0 or x6 > x2 = 0. Enforcing gac on each constraint

reduces the domain of neither x5 nor x6.
Following Theorem 3, we should assign x5 next. Either value in the domain of x5 will

lead to a solution. In each case the value 0 will be removed from the domain of x6. One can
con�rm easily that we can �nd all solutions failure-free, if we use the orders as suggested in

Theorem 3.

Now, consider using an order that is not in accordance with the order in the lexleader

constraints and hence not ful�lling the condition of Theorem 3: instead of assigning x5, we
try to assign a value to x6. If we try to assign the value 0, the assignment fails after gac

and we need to backtrack.

This example shows that assigning the variables in a di�erent order than for the lexleader
constraints may lead to failures during search. However, the example con�rms that all
solutions can be found without failing if the correct variable and value orders are followed.
Empirically, it has been known for a long time that lexleader constraints may increase the

9

Januschowski et al.

run-time as opposed to reducing it (Gent et al., 2002). Also well-known is the advice to use
the same orders for search and for the construction of lexleader constraints (see e.g. Gent
et al., 2006). Theorem 3 gives further theoretical justi�cations for using the same orders.

The following result is the main result of this section.

Theorem 5 Lcsp has polynomial delay.

Proof Consider a chronological backtrack algorithm with the variable and value order of
the lexleader constraints. We have to prove that the time from the start of the chronological
backtrack algorithm to the �rst solution, the time between consecutive solutions and the
time between the last solution and termination of the algorithm is polynomial.

The time from start to the �rst solution is polynomial, because assigning min to every
variable leads to (the �rst) solution and the time from last solution to termination is also
polynomial, because assigning max to every variable is allowed (and the last solution).

Hence, we only prove that the time between consecutive solutions is polynomial. Con-
sider a node in the search tree and the set of lexleader constraints. We can enforce gac on
a single lexleader constraint in polynomial time (Kiziltan, 2004) and we can also ensure in
polynomial time that each lexleader constraints is gac.4 Corollary 4 guarantees that the
current subtree contains a solution which we can then �nd in polynomial time.

While Theorem 5 mainly serves as a foundation of later results, it also has an interest
in itself: for example, �nding asymmetric acyclic digraphs can be modelled by csps in
lcsp (Januschowski, 2011). We note that Theorem 5 also holds for the practically impor-
tant case where there is only a polynomial number (in the variables) of lexleader constraints
in lcsp. We further remark that for sets of lexleader constraints in lcsp that have super-
exponential size in the number of the variables, a simple generate-and-test approach is
enough to prove Theorem 5. This is because we measure the delay in the size of the csp in-
cluding the (super-exponentially many) lexleader constraints in Theorem 5 and polynomial
time in the size of the csp with lexleader constraints means super-exponential time in the
size of the csp without lexleader constraints.

In the next section, we prove stronger results on combining lexleader constraints in lex
with problem-speci�c constraints.

5. Adding Lexleader Constraints to Symmetric Csps

In the previous section, we considered csps with lexleader constraints in isolation from
problem-speci�c constraints. In practice, we consider csps with lexleader constraints in
combination with other constraints. This is the setting of this section.

Before we start, we state two assumptions. Our �rst assumption is that we ignore
the problem of �nding symmetries. In many cases, the symmetries are provided by the user
through their insight into a speci�c problem (see Gent et al., 2006). For automated symmetry
detection, �nding symmetries is as hard as the graph isomorphism problem (Crawford, 1992)
whose complexity status is a long-standing open problem (Garey and Johnson, 1979). It
is well-solved in practice (see e.g. McKay, 1981). Identifying whether a transposition is a

4. This is in contrast to achieving gac on a conjunction of lexleader constraints for which enforcing gac is
NP-hard (Bessière et al., 2004).

10

Symmetry Breaking with Polynomial Delay

variable constraint symmetry is tractable as one easily veri�es. Our second assumption is
that we ignore the complexity of reducing lexleader constraints such that they �t the class
lex. For example, lexleader constraints for symmetries that are disjoint compositions of
transpositions can easily be reduced. Note, that it may not always be possible to reduce
lexleader constraints such that they �t into lcsp, however, in practice, disjoint transpositions
occur frequently (e.g. row-and column symmetries in matrix models Flener et al., 2002).

For this section, we assume the existence of an oracle, that tells us for any given csp

with an order on the variables whether a consecutive partial assignment (with respect to
this order) can be extended to a solution. We simply refer to this as the oracle. We provide
Algorithm 1 that �nds all solutions to any csp where we have added lexleader constraint
in lex. The solutions that Algorithm 1 outputs are the solutions of the csp modulo the
lexleader constraints: these are usually much fewer solutions than the csps without lexleader
constraints has. In Theorem 6 we prove that Algorithm 1 works with polynomial delay in
calls to the oracle. We call this polynomial oracle-delay. Since the oracle can decide the
satis�ability of any csp easily, we do not further discuss the case where the input csp is
unsatis�able.

In the following, we describe Algorithm 1. Algorithm 1 is a chronological backtrack
search for all solutions similar to algorithm PolEnum (Cohen, 2004). We assume that every
variable xi has a domain Di that we reduce during search by maintaining gac. Maintaining
gac is the main di�erence between our algorithm and PolEnum. We assume that domains
are backtrackable, i.e., domains restore themselves upon backtracking. Given a csp C,
we �x an order in Step 1 which we use both for search and for constructing the lexleader
constraints before reducing the lexleader constraints to be in lex. In order to facilitate
exposition, we say that this step constructs a second csp Clex which consists of the same
variables and domains as C. The constraints of Clex are in lex for the speci�ed order and
so, Clex ∈ lcsp. We search for all solutions in Clex with a chronological backtrack search
with a �xed variable and value order as in Corollary 4 maintaining gac on the lexleader
constraints (Step 10). The assignment step of the algorithm is in two stages. First, we
tentatively assign the smallest allowed value to the next variable in the search order in Clex

and propagate. This step will always succeed. Next, we turn to the oracle in Step 11 and
ask whether the current partial assignment can be extended to a solution in C. The oracle
takes all domain reductions through enforcing gac into account. If the oracle con�rms
the existence of a solution in C, we consider the next variable in the search order; if no
solution exists, we consider the next value, removing the current value from the domain of
the variable (Step 18). We propagate the e�ect of the oracle call using Clex. We backtrack
in Step 21 and restore the domains to the state just before the undone assignment happened.

The following result shows that Algorithm 1 �nds solutions with polynomial oracle-delay.

Theorem 6 Algorithm 1 �nds solutions with polynomial oracle-delay.

Proof Given a csp C as input to the algorithm, let the csp Clex consist of the variables
and domains of C and lexleader constraints in lex for the input symmetries. We assign
values to variables in such a way that the only e�ect that enforcing gac on the lexleader
constraints in Clex has, is a raise in the lower bound of the unassigned variables. This is
analogous to Theorem 3. As opposed to the proof of Corollary 4, however, we cannot simply
set all remaining variables to max to have a guaranteed solution for the branch of the search

11

Januschowski et al.

Input: csp C with n variables, each variables has domain D and a set S of
symmetries of C such that the corresponding lexleader constraints for S are
in lex ;

Output: All symmetrically distinct solutions of C with respect to S
1 Fix search order [x1, x2, . . . , xn] ;
2 Construct lexleader constraints in lex with order [x1, x2, . . . , xn] ;
3 For each variable xi de�ne a backtrackable domain Di = D ;
4 De�ne a partial assignment Assign = ∅ ;
5 i← 1 ;
6 while i > 0 do
7 if Di 6= ∅ then

8 d← min(Di) ;
9 Assign← Assign ∪ {(xi, d)} ;
10 Enforce gac on lexleader constraints ;
11 if Assign extends to a solution in C then

12 if i = n then

13 Print Assign as the next solution ;
14 else

15 i← i+ 1 ;

16 else

17 Assign← Assign \ {last assignment to xi} ;

18 Di ← Di \ {d} ;
19 else

// backtrack

20 Di ← D ;
21 Assign← Assign \ {last assignment to xi} ;
22 i← i− 1 ;

Algorithm 1: Chronological Backtrack for Finding All Solutions.

12

Symmetry Breaking with Polynomial Delay

tree (as this could be forbidden by the constraints in C). We have to prove that the current
assignment on the �rst i variables can be extended to a solution in C that also satis�es the
constraints in Clex. For the sake of contradiction, we assume that the current assignment
cannot be extended to a solution that satis�es all constraints in Clex.

The oracle guarantees that the current assignment can be extended to a solution S of
C. If S is forbidden by a constraint in Clex, then a symmetry φ exists with φ(S) <lex S.
So, φ(S) has a strictly smaller value v on the �rst position where S and φ(S) di�er, say at
position j. If j > i, then there is a solution in the current branch, which we assumed to be
impossible. So, j ≤ i. However, value v for variable j was removed by enforcing gac on the
lexleader constraint for symmetry φ, when �nding solution S, because we always choose the
smallest available value. Hence, the oracle should have indicated that the current assignment
cannot be extended to a solution on the reduced domains.

This proves that for the current branch of the search tree, we can surely �nd a solution.
Hence, we can use the same argument as in the proof of Theorem 5 to show that the time
between �nding consecutive solutions and the time to �nd the �rst solution is polynomial.
To terminate the proof, we only have to show that the time between the last solution and
the termination of the algorithm requires a polynomial number of calls to the oracle. We
have already shown that whenever the oracle con�rms that a solution still exists for the
current branch, a solution in this branch exists that is allowed by the lexleader constraints
as well. So, in the worst case, we have to backtrack to the last assigned variable and call
the oracle for all remaining values for the variable until we have reached the �rst variable.
Hence, a polynomial number of calls to the oracle su�ces to terminate the algorithm.

In the remainder of this section, we use Algorithm 1 and Theorem 6 to show that for
some tractable classes of csps, we can �nd all solutions with polynomial delay, even if we
add lexleader constraints in lex.

First, we introduce some more notation. Let P be a class of csps. The class Plex then
consists of instances C which we can decompose into two instances CP and Clex such that
CP ∈ P and Clex ∈ lcsp with the property that the constraints in Clex are constructed for
a subset of the symmetries of CP . We use the natural order on the domains as a value order
for constructing the lexleader constraints and we adapt the variable order in the lexleader
constraints, depending on CP . We note that an instance C has at least one solution per
orbit of solutions in CP because Clex only contains lexleader constraints for (some of) the
symmetries of CP .

We note that some tractable classes are conservative, i.e. closed under arbitrary domain
reductions. So, the oracle surely runs in polynomial time. For conservative classes Theorem 6
shows that adding lexleader constraints in lex preserves polynomial delay. This is our main
contribution, which we now state explicitly.

Corollary 7 Let P be a class of csps with polynomial delay. If P is conservative, then Plex
has polynomial delay.

If we limit the number of lexleader constraints to be polynomial in the size of the input csp,
then we have shown the following.

13

Januschowski et al.

Corollary 8 Let P be a class of csps with polynomial delay. If P is conservative and if

the size of Plex is bounded by a polynomial in the size of P , then Plex has a delay that is

polynomial in the size of P .

If we employ lexleader constraints for all appropriate symmetries, which may be a possibly
super-exponential number, then Corollary 7 states that polynomial delay is guaranteed in the
size of the csp and the size of the (possibly super-exponentially many) lexleader constraints.
Corollary 8 is geared towards practical needs. In practice, we typically limit the number of
lexleader constraints to be at most polynomial by only selecting a subset of the symmetries.
Corollary 8 then guarantees that polynomial delay is preserved in the size of the original
instance � this is remarkable because a polynomial sized set of lexleader constraints may
exclude super-exponentially many solutions.

Here, we reconsider Example 1. Any csp with an alldifferent constraint (decomposed
into binary 6= constraints) has a perfect5 msc and csps with perfect mscs form a tractable
class (Salamon and Jeavons, 2008). Furthermore, the class is conservative because a csp

with a perfect msc continues to have a perfect msc after applying arbitrary domain reduc-
tion. Therefore, deciding whether a partial assignment leads to a solution is tractable. In
other words, the oracle runs in polynomial time. With Corollary 8, it follows that csps
with a perfect msc and added lexleader constraints in lex have polynomial delay. Find-
ing all symmetrically distinct solutions for csps consisting of a decomposed alldifferent

constraint is practically impossible without using lexleader constraints in lex, since there
are super-exponentially solutions in total. However, with added lexleader constraints for
transpositions that are contained in lex, �nding all symmetrically distinct solutions is easy.
Note, that �nding transpositions is tractable and also the reduction of the corresponding
lexleader constraint so that it is contained in lex.

Other examples include csps with constraints in a tractable conservative language (Bu-
latov, 2003), csps with the broken triangle property (Cooper et al., 2010) and csps with �xed
bounded degree of cyclicity (Jeavons et al., 1994). More details can be found in (Januschowski,
2011).

6. Conclusion and Future Work

We have shown that for a conservative and tractable class of csps P , we can still �nd all
solutions with polynomial delay after adding lexleader constraints in the class lex to each
instance in P . If we only add a polynomial number of certain lexleader constraints to the
instances in P , we have shown that the delay is polynomial also in the size of P . Our results
mean that adding certain lexleader constraints enables us to �nd all symmetrically distinct
solutions in less time.

Our results highlight the necessity to use the same orders for search and for lexicographic
ordering. This has been noticed empirically before and our results provide a theoretical
support for this.

Further work would try to generalise our results to classes of csps with polynomial delay
that are non-conservative as well as more general lexleader constraints. Finally, comparing

5. A graph is perfect if it does not contain an odd (anti)hole (Chudnovsky et al., 2006).

14

Symmetry Breaking with Polynomial Delay

our methodology to techniques to avoid symmetry in combinatorial design (Colbourn and
Dinitz, 2006) would be interesting.

Acknowledgements. The �rst author thanks Dave Cohen and Andras Salamon for dis-
cussions on the topic. He is supported by the Embark initiative of the Irish Research Council
for Science, Engineering and Technology. The authors thank Jean-Charles Regin and the
anonymous referees for comments that helped improving this paper.

References

Markus Behle and Friedrich Eisenbrand. 0/1 vertex and facet enumeration with BDDs. In
Proceedings of the Nineth Workshop on Workshop on Algorithm Engineering and Experi-

ments and Workshop on Analytic Algorithms and Combinatorics, pages 158�165, 2007.

Christian Bessière, Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. The complexity
of global constraints. In Proceedings of The Nineteenth National Conference on Arti�cial

Intelligence (AAAI '04), pages 112�117. AAAI Press / The MIT Press, 2004.

Andrei A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceedings

of the Eighteenth Annual IEEE Symposium on Logic in Computer Science (LICS '03),
pages 321�332, Washington, DC, USA, 2003. IEEE Computer Society.

Michael R. Bussieck and Marco E. Lübbecke. The vertex set of a 0/1-polytope is strongly
P-enumerable. Computational Geometry, 11(2):103�109, 1998.

Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect
graph theorem. Ann. Math. (2) 164, No. 1, pages 51�229, 2006.

David Cohen. Tractable decision for a constraint language implies tractable search. Con-

straints, 9:219�229, 2004.

David Cohen, Peter Jeavons, Christopher Je�erson, Karen Petrie, and Barbara Smith. Sym-
metry de�nitions for constraint satisfaction problems. Constraints, 11:115�137, 2006.

Charles J. Colbourn and Je�rey H. Dinitz. Handbook of Combinatorial Designs, Second

Edition (Discrete Mathematics and Its Applications). Chapman & Hall/CRC, 2006.

Martin C. Cooper, Peter G. Jeavons, and András Z. Salamon. Generalizing constraint
satisfaction on trees: Hybrid tractability and variable elimination. Arti�cial Intelligence,
174(9�10):570�584, 2010.

James Crawford. A theoretical analysis of reasoning by symmetry in �rst-order logic. In
Proceedings of the AAAI '92 workshop on tractable reasoning, pages 17�22, 1992.

James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. Symmetry-breaking
predicates for search problems. In Proceedings of the Fifth International Conference on

Principles of Knowledge Representation and Reasoning (KR '96), pages 148�159. Morgan
Kaufmann, 1996.

15

Januschowski et al.

Andreas Distler and Tom Kelsey. The monoids of orders eight, nine & ten. Annals of

Mathematics and Arti�cial Intelligence, 56(1):3�21, 2009.

Pierre Flener, Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin Pearson, and
Toby Walsh. Breaking row and column symmetries in matrix models. In Proceedings of

the Eigth International Conference on Principles and Practice of Constraint Programming

(CP '02), volume 2470, pages 187�192, 2002.

Alan M. Frisch, Chris Je�erson, Bernadette Martínez Hernández, and Ian Miguel. The rules
of constraint modelling. In Proceedings of the Nineteenth International Joint Conference

on Arti�cial Intelligence (IJCAI '05), pages 109�116, 2005.

Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

Ian P. Gent, Warwick Harvey, and Tom Kelsey. Groups and constraints: symmetry breaking
during search. In Proceedings of the Eighth International Conference on Principles and

Practice of Constraint Programming (CP '02), pages 415�430, 2002.

Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry in constraint program-
ming. In Francesca Rossi, Peter van Beek, and Toby Walsh, editors, Handbook of Con-

straint Programming, pages 329�376. Elsevier, 2006.

Andrew Grayland, Chris Je�erson, Ian Miguel, and Colva Roney-Dougal. Minimal ordering
constraints for some families of variable symmetries. Annals of Mathematics and Arti�cial

Intelligence, 57:75�102, September 2009.

Gianluigi Greco and Francesco Scarcello. Structural tractability of enumerating CSP solu-
tions. In David Cohen, editor, Proceedings of the Sixteenth International Conference on

Principles and Practice of Constraint Programming (CP '10), Lecture Notes in Computer
Science, pages 236�251. Springer Berlin/Heidelberg, 2010.

C. Norris Ip and David L. Dill. Better veri�cation through symmetry. Formal Methods in

System Design, 9:41�75, 1996.

Tim Januschowski. Aspects of Static Symmetry Breaking. PhD thesis, University College
Cork, 2011.

Peter Jeavons, David Cohen, and Marc Gyssens. A structural decomposition for hyper-
graphs. Contemporary Mathematics, 178:161�177, 1994.

Zeynep Kiziltan. Symmetry Breaking Ordering Constraints. PhD thesis, Department of
Information Science, Uppsala University, Sweden, 2004.

Brendan D. McKay. Practical graph isomorphism. In Congressus Numerantium, pages
45�87, 1981.

Steven Prestwich. The relation between complete and incomplete search. In Chris-
tian Blum, Maria Aguilera, Andrea Roli, and Michael Sampels, editors, Hybrid Meta-

heuristics, volume 114 of Studies in Computational Intelligence, pages 63�83. Springer
Berlin/Heidelberg, 2008.

16

Symmetry Breaking with Polynomial Delay

Jean-François Puget. On the satis�ability of symmetrical constrained satisfaction problems.
In Proceedings of the Seventh International Symposium on Methodologies for Intelligent

Systems (ISMIS '93), pages 350�361, London, UK, 1993. Springer-Verlag.

Jean-François Puget. Breaking symmetries in all-di�erent problems. In Proceedings of the

Nineteenth International Joint Conference on International Joint Conferences on Arti�-

cial Intelligence (IJCAI '05), pages 272�277, 2005.

Colva M. Roney-Dougal, Ian P. Gent, Tom Kelsey, and Steve Linton. Tractable symmetry
breaking using restricted search trees. In Proceedings of the Sixteenth Eureopean Confer-

ence on Arti�cial Intelligence (ECAI '04), pages 211�215. ECAI 2004, 2004.

András Salamon and Peter Jeavons. Perfect constraints are tractable. In Proceedings of Four-
teenth International Conference on Principles and Practice of Constraint Programming

(CP '08), volume 5202 of Lecture Notes in Computer Science, pages 524�528. Springer
Berlin/Heidelberg, 2008.

Henning Schnoor and Ilka Schnoor. Enumerating all solutions for constraint satisfaction
problems. In Proceedings of the Twenty-Fourth Annual Conference on Theoretical Aspects

of Computer Science (STACS '07), pages 694�705. Springer Berlin/Heidelberg, 2007.

Ilya Shlyakhter. Generating e�ective symmetry-breaking predicates for search problems.
Discrete Applied Mathematics, 155(12):1539�1548, 2007.

Barbara M. Smith. Modelling. In Francesca Rossi, Peter van Beek, and Toby Walsh, editors,
Handbook of Constraint Programming. Elsevier, 2006.

17

